A equals B

Weather icon: temperature equal
Weather icon: temperature equal (Photo credit: Wikipedia)

The whole universe is full of inequality. No two galaxies are exactly alike, no two planets are exactly alike, no two grains of sand are exactly alike, no two atoms of silicon are exactly alike. Wait a minute, is that last one correct?

Well, in one sense each atom of silicon is alike. Every silicon atom has 14 protons in its nucleus, and, usually, 14 neutrons. However it could have one or two neutrons extra if it is a stable atom, or even more if it is a radioactive atom. Alternatively it could have less neutrons and again it would be radioactive.

Monocrystalline silicon ingot grown by the Czo...
Monocrystalline silicon ingot grown by the Czochralski process (Photo credit: Wikipedia)

So two silicon atoms with the same number of neutrons in the nucleus are “equal” right? Well, of course a single atom by itself is seldom if ever found in nature, and two isolated similar atoms are very unlikely. But suppose.

An atom of silicon is said to have electron shells with 14 electrons in them. Without going into unnecessary details these electrons can be in a base (lowest) state or in an excited state. With multiple excitation levels and multiple electrons the probability of two isolated atoms of silicon with all electrons in the same excitation state is extremely low.

Atom Structure
Atom Structure (Photo credit: Wikipedia)

In practise of course, you would not find isolated atoms of silicon at all. You would find masses of silicon atoms, perhaps in a random conformation, or maybe in organised rows and columns. One of the tricks of semi-conductors is that the silicon atoms are organised into an array, with an occasional atom of another element interspersed.

Atoms according cubical atom model
Atoms according cubical atom model (Photo credit: Wikipedia)

This has the effect of either providing an extra electron or one fewer in parts of the array. Under certain conditions this allows the silicon atoms and the doping element to pass the extra electron, or the lack of an electron (known as a hole) along the array in an organised manner, a phenomenon known in the macroscopic world as an electric current.

English: Drawing of a 4 He + -ion, with labell...
English: Drawing of a 4 He + -ion, with labelled electron hole. (Photo credit: Wikipedia)

So, while two atoms of silicon may in some theoretical physical and chemical sense be equal, in practice, they will be in different states, in different situations. What can be said about two silicon atoms is that fit an ideal pattern of a silicon atom, in that the nucleus of the atom has 14 protons. Some of the properties and states of the two atoms will be different.

At the very least the two atoms will be in different locations, moving with different velocities and with different amounts of energy. They can never be “equal as such. The best that you could probably say is that two atoms of the same isotope of silicon have the same number of neutrons and protons in their nuclei.

Periodic table with elements colored according...
Periodic table with elements colored according to the half-life of their most stable isotope. Stable elements. Radioactive elements with half-lives of over four million years. Half-lives between 800 and 34,000 years. Half-lives between 1 day and 103 years. Half-lives ranging between a minute and 1 day. Half-lives less than a minute. (Photo credit: Wikipedia)

When we talk about numbers we stray into the field of mathematics, and in maths “equal” has several shades of meaning. When we say that one integer equals another integer we are essentially saying that they are the same thing. So 2 + 1 = 3 is a bit more than a simple equality and in fact that expression can be referred to as an identity.

Algebraic proofs are all about changing the left hand side of an expression or the right hand side of the expression or both and still retaining that identity between the two sides.

Mnemosyne with a mathematical formula.
Mnemosyne with a mathematical formula. (Photo credit: Wikipedia)

In the real world we use mathematics to calculate things, such a velocities, masses, energy levels, in fact anything that can be calculated. Issues arise because we cannot measure real distances and times with absolute accuracy. We measure the length of something and we know that the length that we measure is not the same as the actual length of the object that we are measuring.

Lengths are conceptually not represented by integers but by ‘real numbers’. Real numbers are represented by two strings of digits separated by a period or full stop. Both strings can be infinite in length though the both strings are usually represented as being finite in length.

1 Infinite Loop, Cupertino, California. Home o...
1 Infinite Loop, Cupertino, California. Home of Apple Inc. and one of Silicon Valley’s best known streets. (Photo credit: Wikipedia)

If we measure a distance with a ruler or tape measure, the real distance will usually fall between two marks on the ruler or measure. So we can say that the length is, say, between 1.13 and 1.14 units of measurement. If use a micrometer we might squeeze and extra couple of decimal places, and say that the length is between 1.1324 and 1.1325. With a laser measuring tool we can estimate the length more accurately still.

You can see what is happening, I hope. The more accurately we measure a distance, the more decimal places we need. To measure something with absolute accuracy we would need an infinite number of decimal places. So when we say that the distance from A to B equals 1.345 miles, we are not being exact, but are approximating to the level of accuracy that we need. Hence A is not really equal to B.

Aurora during a geomagnetic storm that was mos...
Aurora during a geomagnetic storm that was most likely caused by a coronal mass ejection from the Sun on 24 May 2010. Taken from the ISS. (Photo credit: Wikipedia)

A particularly interesting case of A not being equal to B is in the mathematical case where one is trying to determine the roots of an equation. There are various method of doing this and there is a class of methods which can be designated as iterative.

One first makes a guess as to the correct value, puts that into the equation which generates a new value which is, if the iterative method chosen is appropriate, closer to the correct value. This process is repeated getting ever closer to the correct answer.

Plot of x^3 - 2x + 2, including tangent lines ...
Plot of x^3 – 2x + 2, including tangent lines at x = 0 and x = 1. Illustrates why Newton’s method doesn’t always converge for this function. (Photo credit: Wikipedia)

Of course this process never finishes, so we specify some rule to terminate the process, possibly some number of decimal places, at which to stop. More technically this is called a limit.

To prove convergence, in other words to prove that the process will generate the root if the process is taken to infinity, has proved mathematically difficult. I’m not going to attempt the proof here, but after several attempts from the time of Isaac Newton, this was achieved last century, with the introduction of the concept of limits.

English: A comparison of gradient descent (gre...
English: A comparison of gradient descent (green) and Newton’s method (red) for minimizing a function (with small step sizes). Newton’s method uses curvature information to take a more direct route. Polski: Porównanie metody najszybszego spadku(linia zielona) z metodą Newtona (linia czerwona). Na rysunku widać linie poszukiwań minimum dla zadanej funkcji celu. Metoda Newtona używa informacji o krzywiźnie w celu zoptymalizowania ścieżki poszukiwań. (Photo credit: Wikipedia)

One can then say, roughly, that the end result of an infinite sequence of steps in a process (A) is equal to a required value (B), even though the result no particular step is actually equal to B. You have to creep up on it, as it were.

I’ll briefly mention equality in computer programs and social equality/inequality, if only to say that I might come back to those topics some time.

English: Income inequality in the United State...
English: Income inequality in the United States, 1979-2007 (Photo credit: Wikipedia)

Why do things make sense?

Make it make sense
Make it make sense (Photo credit: edmittance)

Things pretty much make sense. If they don’t we feel that there is a reason that they don’t. We laughingly make up goblins and poltergeist to explain how the keys came to be in the location in which they are finally found, but we, mostly, have an underlying belief that there are good, physical reasons why they ended up there.

Things appear to get a little murkier at the level of the quantum, the incredibly small, but even there, I believe that scientists are looking for an explanation of the behaviour of things, no matter how bizarre. One of the concepts that appears to have to be abandoned is that of every day causality, although scientists appear to be replacing that concept with a more probabilistic version of  the concept of causality. But I’m not going to go there, as quantum physics has to be spelled out in mathematics or explained inaccurately using analogies. I note that there is still discussion about what quantum physics means.

English: Schrödinger equation of quantum mecha...
English: Schrödinger equation of quantum mechanics (1927). (Photo credit: Wikipedia)

We strive for meaning when we consider why things happen. When a stone is dropped it accelerates towards the earth. This is observation. We also observe the way in which it accelerates and Sir Isaac Newton, who would have known from his mathematics the equation which governed this acceleration, had the genius to realise that the mutual attraction of the earth and the stone followed an inverse square law and, even more importantly, that this applied to any two objects which have mass in the entire universe.

English: Mural, Balfour Avenue, Belfast Mural ...
English: Mural, Balfour Avenue, Belfast Mural on a gable wall on Balfour Avenue in Belfast (see also 978903). The mural “How can quantum gravity help explain the origin of the universe?” was created by artist Liam Gillick and is part of a series of contemporary art projects designed to alert people to the ‘10 remaining unanswered questions in science’ at public sites across Belfast. (Photo credit: Wikipedia)

So, that’s done. We know why stones fall and why the earth unmeasurably and unnoticeably jumps to meet it. It is all explained, or is it? Why should any two massy objects experience this attraction? Let’s call it ‘gravity’, shall we? How can we explain gravity?

Well, we could say that it is a consequence of the object having mass, or in other words, it is an intrinsic property of massy objects, which if you think about it, explains nothing, or we can talk about curvature of space, which is interesting, but again explains nothing.

Curved Spaces
Curved Spaces (Photo credit: Digitalnative)

Can you see where I am going with this? Every concept that we consider is either ‘just the way things are’ or requires explanation. Every explanation that we can think up either has to be taken as axiomatic or has to be explained further. Nevertheless most people act as if they believe that there is a logical explanation for things and  that things ultimately make sense.

It is possible that there is no logical explanation of things, and that the apparent relationships between things is an illusion. I once read a science fiction story where someone invented a time machine. Everywhere the machine stopped there was chaos, because there were no laws of nature and our little sliver of time was a mere statistical fluke. When they tried to return to the present they could not find it. This little story demonstrates that although we appear to live in a universe that is logical and there appears to be a structure to it, this may just be an illusion.

English: Illustration of the difference betwee...
English: Illustration of the difference between high statistical significance and statistical meaningfulness of time trends. See Wikipedia article “Statistical meaningfulness test” for more info (Photo credit: Wikipedia)

If we do live in a logical universe we not be able to access and understand the basis and structure of it. We may see things “through a glass darkly”. We may be like the inhabitants of Plato’s Cave. Everything we experience we experience through our senses, so our experience of the world is already second-hand and for many purposes we use tools and instruments to view the world around us. Also, our sense impressions are filtered, modified and processed by our brains in the process of experiencing something. We can take prescribed or non-prescribed drugs which alter our view of the world. So how can we know anything about the universe.

Alternatively there may be order to the universe. There may be ‘laws of nature’ and we may be slowly discovering them. I like the analogy of the blanket – a blanket is held between us and the universe but we are able to poke holes in it. Each hole reveals a metaphoric pixel of information about what lies behind the blanket. Over the years, decades, centuries and millennia we have poked an astronomical number of holes in the blanket, so we have a good idea of the shape of what lies behind it.

Cámara estenopéica / Pinhole camera
Cámara estenopéica / Pinhole camera (Photo credit: RubioBuitrago)

So why do things make sense? Is it because there is a structure to the universe that we are either discovering or fooling ourselves into believing that we are discovering, or is there no structure whatsoever and any beliefs that there are illusions. Maybe there’s another possibility. Maybe the universe does have the structure but it is an ‘ad hoc’ structure with no inherent logic to it all!

Highly Illogical
Highly Illogical (Photo credit: Wikipedia)