40 Years

Plymouth Valiant 100 of some 40 years ago seen...
Plymouth Valiant 100 of some 40 years ago seen on street in New Orleans (Photo credit: Wikipedia)

Forty years, around 14,600 days, 350,400 hours, 21,024,000 minutes, or 1,261,440,000 seconds. In other words around 1.3 gigaseconds. That’s the amount of time that I have been married to my wife, Elizabeth, known to everyone as Matty. I don’t mean to imply that it seems a long time – it doesn’t! Far from it. But it has been a long time, and I am amazed. Firstly because it has been a long time and secondly because we have stuck together for that long.

In that time the earth has travelled 37,600 million kilometres, light from earth or the sun has travelled 40 light years, or 3.8 x 10^14 kilometres. There are around 2,000 known stars within 50 light years of earth, with 133 falling among the brightest 10%, and according to my calculations around half of them are less than 40 light years away. That means that there is little chance that any LGMs will have been blinded by the flash of the photographer’s camera.

Alien2
Alien2 (Photo credit: Wikipedia)

In that time a lot has happened. We have had three children and shortly after that, moved half way around the world. The kids have grown up and we now have three grandchildren, who are also growing up fast. The youngest has been at school for a year now, and it seem only recently that her mother was just starting school herself. Thankfully the kids have not dispersed too widely and they and the grandkids will be lunching with us tomorrow to celebrate.


Embed from Getty Images

I’ve been looking at the things that have happened and changed in that 40 years. Strangely I had thought that the moon landings had not finished when we got married, but in fact there was no overlap. The last moon landing (Apollo 17) happened in 1972, before we were married. (The first landing was in 1969). Weird!

While men have not been to the moon in the last 40 years, many man-made devices have been sent to other planets and even to comets, The Hubble space telescope has sent back amazing photographs of the depths of space and other such telescopes have followed suit.

Eta Carinae captured by the Hubble Space Teles...
Eta Carinae captured by the Hubble Space Telescope. (Photo credit: Wikipedia)

One of the biggest successes in exploration of the solar system has been the Mars Rover Opportunity which has operated on the surface of Mars since 2004. It’s original planned activity period was scheduled to be 90 sols or Martian days (slightly longer than an Earth day). However Opportunity is still functioning and sending back amazing photographs much more than 10 years since it landed.

Many of Opportunity’s photographs and panoramas can be found on the NASA web site, which also contains stunning photographs, both modern and historical, of rocket and shuttle launches. It also includes astronomical photographs taken by many different telescopes and photographs taken on the moon and from orbit. I highly recommend it.

The NASA/ESA Hubble Space Telescope in space.
The NASA/ESA Hubble Space Telescope in space. (Photo credit: Wikipedia)

Of course many important happenings occurred in the last 40 years. One of the biggest was the rise of the Internet. The birth of the networks that formed the Internet happened in the 1970s, and the term “Internet” was used in a technical document in December 1974, four months before we got married!


Embed from Getty Images

Most people spend a lot of time on the Internet using a browser and viewing sites and that aspect of the Internet, originally called “the World Wide Web”, originated in CERN in the late 1980s. At some time a lot later than that I downloaded a copy of the NCSA web server and create a “Hello World” web page. I then pointed a browser at it (probably an early version of Internet Explorer) and up popped my “Hello World” page! At the time I was thrilled and delighted!

Of course not all things that have happened in the last 40 years are so great. According to the WWF the Earth has lost half its wildlife. 40 years ago global warming had not become a topic of concern, although it was first mentioned by Svante Arrhenius in 1896.

Arrhenius
Arrhenius (Photo credit: Wikipedia)

Another notable event around 1975 was the first commercial flight of Concorde in 1976. It went out of service in 2003 having failed to become a commercial success. I worked for British Aerospace at one time, though not directly on anything to do with Concorde. I also worked for British Aerospace who made the Olympus engines for the Concordes.

In 1977 the Queen celebrated her celebrated her silver jubilee, and she is still going 40 years later! I don’t remember much of the celebrations but I do remember that it was a big thing at the time!


Embed from Getty Images

While searching around for links for this post I came across this useful link from the Sunday Telegraph which lists events from the last 50 years. It’s amazing how many seem to be fairly recent and at the same time a long time ago. The first case of AIDS was diagnosed in 1980, for example. The Vietnam war ended in 1975. The first test tube baby was born in 1978. Her son was conceived naturally and was born in 2006.

So much that we take for granted today was not around when we got married. No Internet as above. No cell phones. According to the Sunday Times list above, the first British mobile phone call was made by the comedian Ernie Wise to Vodafone. The first mobile phones were small bricks and had battery lives which were very short. They were also rare and expensive. Facebook, Twitter and all the other “Social Media” sites were well in the future and the multifunction devices that mobile phones have become were almost unimaginable.


Embed from Getty Images

So many things have changed that it is a wonder that anything has lasted. Our marriage has lasted, even though the concept of marriage itself has changed to include same-sex marriage, over the four decades. It seems that even same-sex marriage is becoming less popular, with couples often having children first and getting married later. That still seems odd to me, but it seems to work for many people.

We’ve made it through 40 years while all things have changed around us. I’m proud of that fact and hope that we can continue for many more. But we have a long way to go to beat my parents – they just recently celebrated 70 years of marriage.

Great Observatories' Unique Views of the Milky Way
Great Observatories’ Unique Views of the Milky Way (Photo credit: Wikipedia)

Dis-Continuum

English: The Clump looking from the Redhouse
English: The Clump looking from the Redhouse (Photo credit: Wikipedia)

Where ever one looks, things mostly seem to be in lumps or clumps of matter. We live on a lump of matter, one of a number of lumps of matter orbiting an even bigger lump of matter. We look into the sky when the bigger lump of matter is conveniently on the other side of our lump of matter and we see evidence of other lumps of matter similar to the lump of matter that our lump of matter orbits.

We see stars, in short, which poetically speaking float in a void empty of matter. We can see that these stars are not evenly distributed and that they gather together in clumps which we call galaxies. Actually stars seem to clump together in smaller clumps such as the Local Cluster of a dozen or so stars, and most galaxies have arms or other features that show structure at all levels.

Ancient Galaxy Cluster Still Producing Stars
Ancient Galaxy Cluster Still Producing Stars (Photo credit: Wikipedia)

The galaxies, which we can see between the much closer stars of our own galaxy, also appear to be clustered together in clumps, and the clumps seem to be clumped together. Of course, the ultimate clump is the Universe itself, but at all levels the Universe appears to have structure, to be organised, to be formed of lumps and clumps, variously shaped into loops, whorls, sheets, arms, rings, bubbles, and so on.

OK, but in the other direction, towards the smaller rather than the larger, our planet has various systems, weather, orogenic, natural, social and evolutionary. All sorts of systems at all levels, from global scope to the scope of the smallest element.


Embed from Getty Images

In other personal worlds, below the level our interactions with our families, we have all the systems that make up our own bodies. The system that circulates our blood, the system that processes our food, the system that maintains our multiple systems in a state homeostasis.

That is, not a steady state, but a state where all the individual systems self-adjust so that the larger system does not descend into a state of chaos, leading to a disruption of the larger whole. Death.

The main pathways of metabolism in humans, sho...
The main pathways of metabolism in humans, showing all metabolites that account for >1% of an excreted dose. ;Legend PNU-142300, accounts for ~10% of excreted dose at PNU-142586, accounts for ~45% of excreted dose at steady state PNU-173558, accounts for ~3.3% of excreted dose at steady state (Photo credit: Wikipedia)

By and large most systems in our environment are made up of molecules, which are in turn made up of atoms. Atoms are a convenient stopping point on the scale from very large to very small. They are pretty “well defined”, in that they are a very strong concept.

Atoms are rarely found solo. They are sociable critters. They form relationships with other atoms, but some atoms are more sociable than others, forming multiple bonds with other atoms. Some are more promiscuous than others, changing partners frequently.


Embed from Getty Images

These relationships are called molecules, and range from simple to complex, containing from two or three atoms, to millions of atoms. The really large molecules can be broken down to smaller sub-molecules which are linked repeatedly to make up the complex molecules.

To rise higher up the scale for a moment, these molecules, large and small are organised into cells, which are essentially factories for making identical or nearly identical copies of themselves. The differences are necessary to make cells into muscles or organs and other functional features, and cells that make bones and sinews and other structural parts of a body.

A section of DNA; the sequence of the plate-li...
A section of DNA; the sequence of the plate-like units (nucleotides) in the center carries information. (Photo credit: Wikipedia)

As I said, atoms are a convenient stopping point. Every atom of an element is identical at least in its base state. It may lose or gain electrons in a “relationship” or molecule, but basically it is the same as any other element of the same sort.

Each atom consists of a nucleus and surrounding electrons, a model which some people liken to a solar system. There are similarities, but there are also differences (which I won’t go into in this post). The nucleus consists a mix of protons and neutrons. While the number neutrons may vary, they don’t significantly affect the chemical properties of the atom, which makes all atoms of an element effectively the same.

An early, outdated representation of an atom, ...
An early, outdated representation of an atom, with nucleus and electrons described as well-localized particles on well-localized orbits. (Photo credit: Wikipedia)

Each component of an atom is made up of smaller particles called “elementary” particles, although they may not be fundamentally elementary. At this level we reach the blurry level of quantum physics where a particle has an imprecise definition and an imprecise location in macroscopic terms.

Having travelled from the largest to the smallest, I’m now going to talk mathematics. I’ll link back to physics at the end.

Nucleus
Nucleus (Photo credit: Wikipedia)

We are all familiar with counting. One, two, three and so on. These concepts are the atoms of the mathematical world. They can be built up into complex structures, much like atoms can be built into molecules, organelles, cells, tissues and organs. (The analogy is far from perfect. I can think of several ways that it breaks down).

Below the “atomic” level of the integers is the “elementary” level of the rational numbers, what most people would recognise as fractions. Interestingly between any two rational numbers, you can find other rational numbers. These are very roughly equivalent to the elementary particles. Very roughly.

Half of the Hadron Calorimeter
Half of the Hadron Calorimeter (Photo credit: Wikipedia)

One might think that these would exhaust the list of types of numbers, but below (in a sense) the rational numbers is the level of the real numbers. While many of the real numbers are also rational numbers, the majority of the real numbers ate not rational numbers.

The level of the real numbers is also known as the level of the continuum. A continuum implies a line has no gaps, as in a line drawn with a pencil. If the line is made up of dots, no matter how small, it doesn’t represent a continuum.

Qunatum dots delivered by ccp
Qunatum dots delivered by ccp (Photo credit: Wikipedia)

A line made up of atoms is not a continuum, nor is a line of elementary particles. While scientists have found ever more fundamental particles, the line has apparently ended with quarks. Quantum physics seems to indicate that nature, at the lowest level, is discrete, or, to loop back to the start of this post, lumpy. There doesn’t seem to be a level of the continuum in nature.

That leaves us with two options. Either there is no level of the continuum in nature and nature is fundamentally lumpy, or the apparent indication of quantum physics that nature is lumpy is wrong.

Pineapple Lumps (240g size)
Pineapple Lumps (240g size) (Photo credit: Wikipedia)

It’s hard to believe that a lumpy universe would permit the concept of the continuum. If the nature of things is discrete, it’s hard to see how one could consider a smooth continuous thing. It’s like considering chess, which fundamentally defines a discontinuous world, where a playing piece is in a particular square and a square contains a playing piece or not.

It’s a weak argument, but the fact that we can conceive the concept of a continuum hints that the universe may be fundamentally continuous, in spite of quantum physics’ indications that it is not continuous.


Embed from Getty Images